Type Theory
and

T Agao

BY SEAN O'CONNOR

What is Type Theory

Everything we can talk about is a term of some type

Agda can be used to formalize Homotopy Type Theory

For example, zero-N : N denotes that the term zero-N is of type N , the
type of natural numbers.

Additionally, zero-Z : Z denotes that the term zero-Z is of type Z , the
type of integers.

However, zero-N and zero-Z are treated as different terms, as each term
in Homotopy Type Theory can only have one type.

“Propositions as Types”

Logical propositions are types

If P isaproposition, P : P saysthat P is a proof of P
All propositions are types, but not all types are propositions

For example, N == m s a proposition whenever n : N and m : N

How functions function

In type theory, if T is a function that takes as input a term of type A

and produces as output a term of type B ,then f: A - B

g : P = Q says that g is a function that converts proofs of P into proofs of Q
Specifically, if P :P,then gp:Q

The notation A X = ? can be used to easily inline functions. As an example,

A N —=n+ one-N isafunction oftype N = N thatadds 1

Negation in Type Theory

Not helpful to say a term isn’t of some type

We define @ : Type such that there are explicitly no terms of type @
Furthermore, we define = A = A = © for any type A

If wehadboth @a:A and y:— A ,then Ya: O

But there are no terms of type @ , so we have a contradiction

Constructive Logic

The LEM is not assumed to be true. That is, it is not assumed that there exists a
term f such that, for any type A , we havethat fA: A v (— A)

Likewise, double negation elimination is also not assumed to be true, as it posits

that for any type A , there exists a function of type (— (— A)) = A

However, we can derive triple negation elimination as a theorem, which states

that for any type A , there exists a function of type (= (= (= A))) = (= A)

data @ : Type where

—: (A : Type) = Type
- A=A-0

triple-—: {A: Type} = (= (=(—=A)))=(—A)
triple-— x =7

data @ : Type where

—: (A : Type) = Type
—A=A-0

triple-—: {A: Type} = (= (=(—=A)))=(—A)
triple-— x =7

triple-—= x={ }0
[JU**- Presentation.agda Top L1l (Agda)

Goal: = A

X:= (= (= A))

data @ : Type where

—: (A : Type) = Type
—A=A-0

triple-—: {A: Type} = (= (=(—=A)))=(—A)
triple-— x =7

triple-=x={Aa->7?}0
[JU**- Presentation.agda Top L1l (Agda)
Goal: = A

X:= (= (= A))

data @ : Type where

—: (A : Type) = Type
—A=A-0

triple-—: {A: Type} = (= (=(—=A)))=(—A)
triple-— x =7

triple-=x=Aa-A{ }1
[JU**- Presentation.agda Top L1l (Agda)

Goal: ©

a:A
X:=(=(=A))

triple-—=x=Aa—-{ }1

[JU**- Presentation.agda Top L1l (Agda)
Goal: @

a:A
X:=(=(=A))

triple-=x=Aa-{x?}1

[JU**- Presentation.agda Top L1l (Agda)
Goal: @

a:A
X:=(=(=A))

triple-—=x=Aa—-{ }1

[JU**- Presentation.agda Top L1l (Agda)
Goal: @

a:A
X:=(=(=A))

triple-=x=Aa->x{ }2

[JU**- Presentation.agda Top L1l (Agda)
Goal: = (= A)

a:A
X:=(=(=A))

triple-=x=Aa->x{ }2

[JU**- Presentation.agda Top L1l (Agda)
Goal: = (= A)

a:A
X:=(=(=A))

triple-=x=Aa->x{Ay—->7? }2

[JU**- Presentation.agda Top L1l (Agda)
Goal: = (= A)

a:A
X:=(=(=A))

triple-=x=Aa->x{ }2

[JU**- Presentation.agda Top L1l (Agda)
Goal: = (= A)

a:A
X:=(=(=A))

triple-=x=Aa->xAy->4{}3

[JU**- Presentation.agda Top L1l (Agda)
Goal: @

triple-—=x=Aa-xAy-4{}3

[JU**- Presentation.agda Top Ll (Agda)
Goal: @

y:— A
a:A
X:= (= (=A)

triple-=x=Aa-xAy->{ya}3

[JU**- Presentation.agda Top L1l (Agda)
Goal: @

triple-=x=Aa-xAy->{ya}3

triple-=x=Aa-XxXAy—-ya

Acknowledgements

David Jaz Myers, my advisor

The entire JHU Directed Reading Program

Thank you for listening!

