# Fuzzy Type Theory for Opinion Dynamics

Shreya Arya, Greta Coraglia, Paige North, Sean O'Connor, Hans Riess, Ana Tenório

**ACT** 

2022

#### Our group





Left to right: Greta, Shreya, Sean, Ana, Paige, Hans

## Fuzzy Type Theory for Opinion Dynamics

The idea

The math

### Modeling Opinions

Want to model "proof-relevant opinions" We need

- types as opinions
- ► terms as proofs of/reasons for opinions
- ► fuzzy logic as confidence/certainty/strength of opinions

### Type Theories and Fuzzy Logic

Enriching over a different monoidal category gives us a different type theory/logic

|              | binary | fuzzy                                 |
|--------------|--------|---------------------------------------|
| propositions | {0,1}  | [0,1]                                 |
| types        | Set    | $\Sigma_{S:\mathbf{Set}}  S 	o [0,1]$ |

#### CATEGORIES AND TYPE THEORIES

*Type theories* 
$$\Longrightarrow$$
 *Categories*

Given a type theory we can obtain a category where:

- ▶ the objects are contexts  $\Gamma$
- ► the morphisms are (lists of) terms

#### CATEGORICAL SEMANTICS

types in context a class of maps (projections)

$$\Gamma \vdash A \text{ type}$$
  $\Gamma . A \xrightarrow{p_A} \Gamma$ 

terms sections of projections

$$\Gamma \vdash a : A$$
  $\Gamma \cdot A \xrightarrow{\iota \quad a} \Gamma$ 

substitution pullback along projections

... ...

### ENRICHED CATEGORIES AND FUZZY TYPES

Our strategy: enrich the categories, read the type theory!

Call  $V = \Sigma_{S:\mathbf{Set}} S \to [0,1]$  the category whose

- ▶ objects are pairs  $(S, | \_|_S)$  with S a set and  $| \_|_S : S \rightarrow [0, 1]$  a function, called *valuation*
- ▶ morphisms  $f:(S,|_-|_S) \to (T,|_-|_T)$  are order-preserving functions between S and T

Fuzzy type theories  $\Longrightarrow$  *V*-Categories

#### Intuition

| a $V$ -category $\mathcal C$ | an agent in the system      |
|------------------------------|-----------------------------|
| a context                    | a set of beliefs            |
| a type (in context)          | a belief (and its premises) |
| a term of type A             | a proof of the belief A     |

- ▶ we want definite beliefs ⇒ non-fuzzy types
- ► but their reasons might be subject to uncertainty ⇒ fuzzy terms

# Fuzzy Type Theory for Opinion Dynamics

The idea

The math

### Projections and Sections

### Axiom: Types are not fuzzy

For all 
$$A$$
,  $|p_A|_{\mathsf{hom}(\Gamma.A,\Gamma)} = 1$ .

Normally, terms are sections of projections, but

$$\Gamma \xrightarrow{s} \Gamma.A \xrightarrow{p_A} \Gamma$$

$$|id| = 1 \implies |p_A| \cdot |s| = 1 \implies |p_A| = |s| = 1$$

This is too much of a restriction for us!

#### $\alpha$ -sections

#### Definition: $\alpha$ -sections

We say s is a  $\alpha$ -section of p if  $p \circ s = id$  as functions and  $|p| \cdot |s| \ge \alpha$ 

$$\begin{array}{ll} \text{Denoted} & \Gamma \vdash s :_{\alpha} A \\ \\ \text{and we have} & \frac{\Gamma \vdash s :_{\alpha} A}{\Gamma \vdash s :_{\beta} A} & \text{for all } \beta \leq \alpha \end{array}$$

#### SUBSTITUTION AND PULLBACKS

Classically, substitution is performed as pullback along projections. Problem is that in the enriched case we need to consider weighted pullbacks!

Weighted pullbacks are a special case of weighted limits, which replace limits in enriched settings.

This can be used to determine the universal property of weighted pullbacks in *V*-categories

#### WEIGHTED PULLBACKS

Consider a pullback in **Set**-categories

$$\begin{array}{ccc}
A \times_C B & \longrightarrow & B \\
\downarrow & & \downarrow \\
A & \longrightarrow & C
\end{array}$$

What in **Set**-categories is the bijection

$$\mathsf{hom}(Z,A\times_{\mathcal{C}}B)\cong \mathsf{hom}(Z,A)\times_{\mathsf{hom}(Z,\mathcal{C})}\mathsf{hom}(Z,B)$$

can be viewed as a weighted pullback in which

$$\mathsf{hom}(Z, A \times_C B) \cong \mathsf{hom}(Z, A)^{1} \times_{\mathsf{hom}(Z, C)^{1}} \mathsf{hom}(Z, B)^{1}$$

With this perspective, we say that a regular pullback is (1,1,1)-weighted, with  $1=\{*\}$ 

### Fuzzy substitution I

We need to find reasonable weights!

- (1,1,1) with 1 the terminal object doesn't work with fuzzy terms
- We can denote  $\mathbb{1}_x = (\{*\}, const(x))$  to use as our weights
- $ightharpoonup (\mathbb{1}_{\text{val}(-)}, \mathbb{1}, \mathbb{1}_{\text{val}(-)})$



#### Something weird



But the top-left  $\mathbb{1}.A$  is obtained by pullback along a map of value  $\alpha$ , so it isn't the same object at  $\mathbb{1}.A$ .

#### RESOLUTION



We can denote the top-left 1.A as  $1.A_{\alpha}$  and we can read

$$\frac{\vdash s :_{\alpha} A}{\vdash t :_{1} A_{\alpha}}$$

as "Given a proof of A with confidence  $\alpha$ , we can prove with confidence 1 that we can prove A with confidence  $\alpha$ ".

### Fuzzy substitution II





#### VALIDITY

#### Theorem

Such a *V*-category satisfies (a fuzzy version of) all structural rules of (not-yet-dependent) type theory.

Therefore we have categories to encode the logical system of the agents in our system.

#### THE DYNAMIC

- ▶ The work of Jakob Hansen and Robert Ghrist uses a cellular sheaf  $F : Inc(G) \rightarrow Vect$  to study opinion dynamics
- ▶ The work of Hans Riess and Robert Ghrist studies cellular sheaves of the form  $F : Inc(G) \rightarrow Lattices$
- ▶ We want to explore  $F : Inc(G) \rightarrow V$  Cat

#### Future Work

- ► Give an enriched categorical interpretation for the dependent fuzzy types (and address definitional equality);
- ► Replace [0,1] by any ordered monoid *M*;
- ► Explore the dynamic side

#### References I



GHRIST, R., AND RIESS, H.

Cellular sheaves of lattices and the Tarski laplacian. Homology, Homotopy and Applications 24, 1 (2022), 325–345.



Hansen, J., and Ghrist, R. Opinion dynamics on discourse sheaves, 2020.





Hofmann, M.

Syntax and semantics of dependent types.

In Extensional Constructs in Intensional Type Theory. Springer, 1997, pp. 13–54.

Thank you!