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Hypercube graphs

For the n‐dimensional hypercube Qn:

V (Qn) = {0, 1}n

E(Qn) = pairs of vertices that differ in one coordinate
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Cartesian products of graphs

V (G □ H) = {V (G) × V (H)}
E(G □ H) = {(u, v)(u′, v′) | u = u′, vv′ ∈ E(H) or uu′ ∈ V (G), v = v′}

Example: P3 □ C4
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Hypercube graphs are Cartesian products:

Qn+m = Qn □ Qm

Example: Q4 = Q2 □ Q2 = C4 □ C4
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Example: Q4 = Q3 □ Q1

Graph decompositions

A decomposition of a graph G is a set of edge‐disjoint subgraphs whose
edges partition E(G).
Example: Decompositions of Q4 into 8C4’s, 4C8’s, and 2C16’s.

Main Research Question

What graphs can decompose the hypercube Qn?
Our research: Which paths and cycles decompose
even‐dimensional hypercubes?

Necessary conditions for decompositions

Necessary conditions for a graph G to decompose the hypercube Qn:

|V (G)| ≤ |V (Qn)| = 2n

|E(G)| divides |E(Qn)| = n2n−1

The gcd of the degrees of the vertices of G divides n

The gcd of the number of edges in each direction of G divides 2n−1

Prior results

1. Paths in Qn for odd n [3]
2. Hamiltonian cycles in Qn for even n [1]
3. Cycles of length less than 2n/n in Qn for even n [2]
4. Cycles of length 2i for 1 < i < n in Qn for even n [4]

New cycle decompositions

We found new decompositions of hypercubes into long cycles whose
lengths have odd divisors.

Theorem: If n is even and the sum of at most 3 powers of 2, then the cycle
with the largest length divisible by n while still satisfying the necessary
conditions decomposes Qn.

Examples:

Q14 can be decomposed into eight cycles of length 14 · 210.
This is the longest cycle whose length is a multiple of 14 that satisfies
the necessary conditions. This theorem applies since 14 = 23 + 22 + 21.
Q22 can be decomposed into sixteen cycles of length 22 · 217.
This theorem applies because 22 = 24 + 22 + 21.
Q28 can be decomposed into sixteen cycles of length 28 · 223.
This theorem applies because 28 = 24 + 23 + 22.

Decompositions using generalized hypercubes

A generalized hypercube, denoted Cn
2k, is the n‐fold Cartesian product of

cycle graphs C2k, where k ≥ 2.
Example: C3

16 = C16 □ C16 □ C16

Theorem: A generalized hypercube C
yz
x can be decomposed into y copies

of (Cxy)z.

Example: A decomposition of Qpq into cycles whose length is divisible by
p but not pq.

Since Q18 = Q9
2 = C9

4 = ((C4)3)3, it can be decomposed into three
copies of the generalized hypercube (C43)3. Each of these decomposes
into four cycles of length 3 · 216. Thus Qz18 has a decomposition into
3 · 4 = 12 cycles of length 3 · 216.

Example: A decomposition of Q4n into cycles.

Since Q12 = Q3
4, and Q4 can be decomposed into two copies of C16,

Q12 can be represented as (2C16)3. Since each copy of C16 is spanning
in Q4, Q12 can be decomposed into two copies of C3

16. Each of these
generalized hypercubes can be decomposed into four cycles of length
6 · 29. Hence, Q12 has a decomposition into 2 · 4 = 8 cycles of length
6 · 29.

Anchored products and decompositions

Anchored Products

Given graphs G and H , with X ⊆ V (G) and Y ⊆ V (H) then the anchored
product (G, X) ⊞ (H, Y ) is the graph where

V ((G, X) ⊞ (H, Y )) = {V (G) × Y ∪ X × V (H)}
E((G, X) ⊞ (H, Y )) =

{(u, v)(u′, v′) | u = u′ ∈ X, vv′ ∈ E(H) or uu′ ∈ V (G), v = v′ ∈ Y }

A anchored torus is an anchored product where G and H are cycles.

Anchored Decompositions

An anchored decomposition of a graph G is a set of ordered pairs
{(G1, V1), . . . , (Gm, Vm)} such that {G1, . . . , Gm} forms a decomposition
of G, and V1, . . . , Vm is a partition of V (G).
Theorem: Given an anchored decomposition of a graph G into m cycles of
some length x, G □ Cy has an anchored decomposition into m anchored
tori.

Example: If G can be decomposed into two cycles C1 and C2, then the
Cartesian product G □ C can be decomposed into two anchored products
(C1, V )⊞C and (C2, W )⊞C , where V and W partition the vertices of G.

Decompositions of hypercubes using anchored products

We can use a decomposition of a hypercube Q2n into anchored tori as an
intermediate step to decompose Q2n into cycles.

Example: Since Q6 = Q4 □ Q2, and Q4 can be decomposed into two
copies of C16, we can represent Q6 as (2C16) □ C4. Thus Q6 has a de‐
composition into two anchored tori of the form (C16, V ) ⊞ C4. Each of
these anchored tori can then be decomposed into two cycles, resulting in
a decomposition of Q6 into 4 cycles.

Alternating Anchored Circuits

An alternating anchored circuit (C, V ) is an anchored circuit such that

If v ∈ V then v has degree two in the circuit.
The edges of C are 2‐colored such that

Consecutive edges have the same color unless they share a vertex in V .
Each vertex is incident with at most two edges of each color.

Theorem: The anchored product of an alternating anchored circuit with a
cycle can be decomposed into two cycles of the same length.

Example: Decomposing Q14 into cycles of length 14 · 210

Q14 = Q8 □ Q4 □ Q2. Considering justQ8 = Q4 □ Q4, we can decompose
Q8 into a pair of generalized hypercubes 2C16 □ 2C16 = 2C2

16. We can
take an anchored decomposition of C2

16 to decompose each copy into two
anchored cycles. Furthermore, in each graph we pick a different parity pair
of vertices that are a distance of two apart in both respective cycles.
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We can now consider all four of these anchored cycles independently.

Decomposition of Q14 Continued
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We can then swap one of the cycles from each pair.

v2 v3

v0 v1

v0 v1

v2 v3

We can then take the Cartesian product of Q8 with Q4. Since Q4 can be
decomposed into two spanning copies of C16, Q12 can be decomposed
into four anchored tori using each of the four cycles above. Here is one

of the tori from each pair.
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Considering just one of these anchored tori, (C, V ), take the anchored
decomposition into two cycles (bold vertices are the vertices of V ).

(v0, y)
(v1, y)

Color each of these cycles in paths of alternating color satisfying
properties of alternating anchored circuits.

(v0, y)
(v1, y)

Swap two edges in the anchored torus to connect the two cycles into an
alternating anchored circuit.

(v0, y)
(v1, y)

We obtain an anchored decomposition of Q12 into 4 alternating anchored
circuits. Taking the anchored product of each one with Q2 we get a

decomposition of Q14 into 8 cycles.

References
[1] J. Aubert and B. Schneider, Decomposition de la somme cartesienne d’un cycle et de l’union de deux

cycles hamiltoniens en cycles hamiltoniens, Discrete Mathematics 38 (1982) 7–16
[2] M. Axenovich, D. Offner, and C. Tompkins, Long path and cycle decompositions of even hypercubes,

European Journal of Combinatorics 95 (2021) 103320
[3] J. Erde, Decomposing the cube into paths, Discrete Mathematics 336 (2014) 41–45
[4] S. Gibson and D. Offner, Decompositions of even hypercubes into cycles whose length is a power of

two, arXiv (2021) 2107.07450


